Respuesta :

Step-by-step explanation:

Think of it like a right triangle. Do you have a graph handy?

Ok, graph both of the points. Now connect the points. That's our hypotenuse and the side length we want to find.

Now, bring down a line from (-3,5) to the x axis. Do you see a right triangle?

All we have to do is find the hypotenuse of this right triangle we just drew. We already have the leg lengths which are 3 and 5. Using this, do the pythagorean theorem.

9+25=34

√34 is our hypotenuse & distance between the points

Space

Answer:

[tex]\displaystyle d = \sqrt{34}[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Coordinates (x, y)

Algebra II

  • Distance Formula: [tex]\displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Step-by-step explanation:

Step 1: Define

Identify

Point (0, 0)

Point (-3, 5)

Step 2: Find distance d

Simply plug in the 2 coordinates into the distance formula to find distance d

  1. Substitute in points [Distance Formula]:                                                         [tex]\displaystyle d = \sqrt{(-3-0)^2+(5-0)^2}[/tex]
  2. [√Radical] (Parenthesis) Subtract:                                                                   [tex]\displaystyle d = \sqrt{(-3)^2+(5)^2}[/tex]
  3. [√Radical] Evaluate exponents:                                                                       [tex]\displaystyle d = \sqrt{9+25}[/tex]
  4. [√Radical] Add:                                                                                                 [tex]\displaystyle d = \sqrt{34}[/tex]