Respuesta :
Answer:
The answer is below
Step-by-step explanation:
The profit equation is given by:
p(t)= -25t³+625t²-2500t
The maximum profit is the maximum profit that can be gotten from selling t trailers. The maximum profit is at point p'(t) = 0. Hence:
p'(t) = -75t² + 1250t - 2500
-75t² + 1250t - 2500 = 0
t = 2.3 and t = 14.3
Therefore t = 3 trailers and t = 15 trailers
p(15) = -25(15³) + 625(15²) - 2500(15) = 18750
Therefore the company makes a maximum profit of approximately $18750 when it sells approximately 15 trailers.
Answer:
See below
Step-by-step explanation:
Since t is number of trailers, the domain includes only those values greater than 0.
On the relevant domain, the graph crosses the x-axis at the points (5,0) and (20,0). Between these points, the value of p(t) is positive. So the company makes a profit when it sells between 5 and 20 trailers.
On the positive interval between these points, the graph reaches a relative maximum when t roughly equals 14 and p(t) roughly equals $19,000.
So the maximum profit of approximately $19,000 occurs when it sells approximately 14 trailers.