Answer:
ΔD = 2.29 10⁻⁵ m
Explanation:
This is a problem of thermal expansion, if the temperature changes are not very large we can use the relation
ΔA = 2α A ΔT
the area is
A = π r² = π D² / 4
we substitute
ΔA = 2α π D² ΔT/4
as they do not indicate the initial temperature, we assume that ΔT = 75ºC
α = 1.7 10⁻⁵ ºC⁻¹
we calculate
ΔA = 2 1.7 10⁻⁵ pi (1.8 10⁻²) ² 75/4
ΔA = 6.49 10⁻⁷ m²
by definition
ΔA = A_f- A₀
A_f = ΔA + A₀
A_f = 6.49 10⁻⁷ + π (1.8 10⁻²)² / 4
A_f = 6.49 10⁻⁷ + 2.544 10⁻⁴
A_f = 2,551 10⁻⁴ m²
the area is
A_f = π D_f² / 4
A_f = [tex]\sqrt{4 A_f /\pi }[/tex]
D_f = [tex]\sqrt{4 \ 2.551 10^{-4} /\pi }[/tex]
D_f = 1.80229 10⁻² m
the change in diameter is
ΔD = D_f - D₀
ΔD = (1.80229 - 1.8) 10⁻² m
ΔD = 0.00229 10⁻² m
ΔD = 2.29 10⁻⁵ m