when a temparature of a coin is 75°C, the coin's diameter increases. if the original diameter of a coin is 1.8*10^-2 m and its coefficient of linear expansion is 1.7*10^5/°C, what is the change in coins diameter?​

Respuesta :

Answer:

ΔD = 2.29 10⁻⁵ m

Explanation:

This is a problem of thermal expansion, if the temperature changes are not very large we can use the relation

          ΔA = 2α A ΔT

the area is

         A = π r² = π D² / 4

we substitute

         ΔA = 2α π D² ΔT/4

as they do not indicate the initial temperature, we assume that ΔT = 75ºC

    α = 1.7 10⁻⁵ ºC⁻¹

we calculate

          ΔA = 2 1.7 10⁻⁵ pi (1.8 10⁻²) ² 75/4

          ΔA = 6.49 10⁻⁷ m²

by definition

           ΔA = A_f- A₀

           A_f = ΔA + A₀

           A_f = 6.49 10⁻⁷ + π (1.8 10⁻²)² / 4

           A_f = 6.49 10⁻⁷ + 2.544 10⁻⁴

           A_f = 2,551 10⁻⁴ m²

the area is

           A_f = π D_f² / 4

           A_f = [tex]\sqrt{4 A_f /\pi }[/tex]

           D_f = [tex]\sqrt{4 \ 2.551 10^{-4} /\pi }[/tex]

           D_f = 1.80229 10⁻² m

the change in diameter is

           ΔD = D_f - D₀

           ΔD = (1.80229 - 1.8) 10⁻² m

           ΔD = 0.00229 10⁻² m

           ΔD = 2.29 10⁻⁵ m