Water with a volume flow rate of 0.001 m3/s, flows inside a horizontal pipe with diameter of 1.2 m. If the pipe length is 10m and we assume fully developed internal flow, find the pressure drop across this pipe length.

Respuesta :

Answer:

[tex]\triangle P=1.95*10^{-4}[/tex]

Explanation:

Mass [tex]m=0.001[/tex]

Diameter [tex]d=1.2m[/tex]

Length [tex]l=10m[/tex]

Generally the equation for Volume flow rate is mathematically given by

 [tex]Q=AV[/tex]

 [tex]V=\frac{Q}{\pi/4D^2}[/tex]

 [tex]V=\frac{0.001}{\pi/4(1.2)^2}[/tex]

 [tex]V=8.84*10^{-4}[/tex]

Generally the equation for Friction factor is mathematically given by

 [tex]F=\frac{64}{Re}[/tex]

Where Re

Re=Reynolds Number

 [tex]Re=\frac{pVD}{\mu}[/tex]

 [tex]Re=\frac{1000*8.84*10^{-4}*1.2}{1.002*10^{-3}}[/tex]

 [tex]Re=1040[/tex]

Therefore

 [tex]F=\frac{64}{Re}[/tex]

 [tex]F=\frac{64}{1040}[/tex]

 [tex]F=0.06[/tex]

Generally the equation for Friction factor is mathematically given by

 [tex]Head loss=\frac{fLv^2}{2dg}[/tex]

 [tex]H=\frac{0.06*10*(8.9*10^-4)^2}{2*1.2*9.81}[/tex]

 [tex]H=19.9*10^{-9}[/tex]

Where

[tex]H=\frac{\triangle P}{\rho g}[/tex]

[tex]\triangle P=\frac{19.9*10^{-9}}{10^3*(9.81)}[/tex]

[tex]\triangle P=H*\rho g[/tex]

[tex]\triangle P=1.95*10^{-4}[/tex]