Respuesta :
Answer:
499.7 J
Explanation:
Since total mechanical energy is conserved,
U₁ + K₁ + W₁ = U₂ + K₂ + W₂ where U₁ = potential energy at bottom of incline = mgh₁, K₁ = kinetic energy at bottom of incline = 1/2mv₁² and W₁ = work done by friction at bottom of incline, and U₂ = potential energy at top of incline = mgh₂, K₁ = kinetic energy at top of incline = 1/2mv₂² and W₂ = work done by friction at top of incline. m = mass = 4 kg, h₁ = 0 m, v₁ = 21.3 m/s, W₁ = 0 J, h₂ = radius of circular ramp = 10 m, v₂ = 2.8 m/s, W₂ = unknown.
So, U₁ + K₁ + W₁ = U₂ + K₂ + W₂
mgh₁ + 1/2mv₁² + W₁ = mgh₂ + 1/2mv₂² + W₂
Substituting the values of the variables into the equation, we have
mgh₁ + 1/2mv₁² + W₁ = mgh₂ + 1/2mv₂² + W₂
4 kg × 9.8 m/s²(0) + 1/2 × 4 kg × (21.3 m/s)² + 0 = 4 kg × 9.8 m/s² × 10 m + 1/2 × 4 kg × (2.8 m/s)² + W₂
0 + 2 kg × 453.69 m²/s² = 392 kgm²/s² + 2 kg × 7.84 m²/s² + W₂
907.38 kgm²/s² = 392 kgm²/s² + 15.68 kgm²/s² + W₂
907.38 kgm²/s² = 407.68 kgm²/s² + W₂
W₂ = 907.38 kgm²/s² - 407.68 kgm²/s²
W₂ = 499.7 kgm²/s²
W₂ = 499.7 J
Since friction is a non-conservative force, the work done by all the non-conservative forces is thus W₂ = 499.7 J