Answer:
(a) [tex]f(2) = 81[/tex]
(b) [tex]g(2) = 83[/tex]
(c) Test average for maths class after test 2 is greater
Step-by-step explanation:
Given
[tex]f(x) = 0.5x + 80[/tex]
[tex]x \to g(x)[/tex]
[tex]1 \to 81[/tex]
[tex]2 \to 83[/tex]
[tex]3 \to 85[/tex]
Solving (a): f(2)
We have:
[tex]f(x) = 0.5x + 80[/tex]
[tex]f(2) = 0.5*2+80[/tex]
[tex]f(2) = 1 + 80[/tex]
[tex]f(2) = 81[/tex]
Solving (b): g(2)
From the table:
[tex]g(x) = 83[/tex] when [tex]x = 2[/tex]
So:
[tex]g(2) = 83[/tex]
Solving (c): Which is greater f(2) or g(2)
In (a) and (b),
[tex]f(2) = 81[/tex]
[tex]g(2) = 83[/tex]
Hence, test average for maths class is greater