Answer:
(a) The time to complete 1 cycle and return is 16/3
(b) The minimum height is 30 inches and the maximum is 54 inches
Step-by-step explanation:
Given
[tex]f(t) = 12\sin(\frac{3\pi}{8}t) + 42[/tex]
Solving (a): Time to complete 1 cycle and return
This implies that we calculate the period. This is calculated using:
[tex]T = \frac{2\pi}{w}[/tex]
Where:
[tex]w =\frac{3\pi}{8}[/tex]
So, we have:
[tex]T = \frac{2\pi}{\frac{3\pi}{8}}[/tex]
[tex]T = \frac{2}{\frac{3}{8}}[/tex]
[tex]T = \frac{2*8}{3}[/tex]
[tex]T = \frac{16}{3}[/tex]
Solving (b): The maximum and the minimum height
To do this, we have:
[tex]-1 \le \sin(\theta) \le 1[/tex]
Which means:
[tex]-1 \le \sin(\frac{3\pi}{8}) \le 1[/tex]
So, the minimum is:
[tex]\sin(\frac{3\pi}{8}) =- 1[/tex]
And the maximum is:
[tex]\sin(\frac{3\pi}{8}) =1[/tex]
Recall that the height is:
[tex]f(t) = 12\sin(\frac{3\pi}{8}t) + 42[/tex]
So, the maximum and the minimum of are:
[tex]h_{min} =12 * -1 + 42[/tex]
[tex]h_{min} =30[/tex]
and
[tex]h_{max} =12*1+42[/tex]
[tex]h_{max} =54[/tex]