Explanation:
The centripetal force [tex]F_c[/tex] on the car must equal the frictional force f in order to avoid slipping off the road. Let's apply Newton's 2nd law to the y- and x-axes.
[tex]y:\:\:\:\:N - mg = 0[/tex]
[tex]x:\:\:F_c = f \Rightarrow \:\:\:m \dfrac{v^2}{r} = \mu N[/tex]
or
[tex]m \dfrac{v^2}{r} = \mu mg[/tex]
Solving for [tex]\mu[/tex],
[tex]\mu = \dfrac{v^2}{gr} = \dfrac{(12.0\:\frac{m}{s})^2}{(9.8\:\frac{m}{s^2})(52\:m)} = 0.28[/tex]