Respuesta :
Answer:
1 : 4
Step-by-step explanation:
[tex]Pressure = \frac{F}{A}[/tex]
[tex]P_1 = Pressure \ on \ the \ largest \ surface \ area[/tex]
[tex]=\frac{F}{20 \times 10 \times 20}[/tex]
[tex]P_2 = Pressure \ on \ small \ surface \ area[/tex]
[tex]=\frac{F}{20 \times 10 \times 5}[/tex]
[tex]\frac{P_1 }{P_2 }= \frac{20 \times 10 \times 5}{20 \times 10 \times 20} = \frac{5}{20} = \frac{1}{4}[/tex] [tex][ \ \ \frac{F}{20 \times 10 \times 20}\ \div\ \frac{F}{20 \times 10 \times 5} => \frac{F}{20 \times 10 \times 20} \times \frac{20 \times 10 \times 5}{F} \ ][/tex]
Therefore ,
[tex]P_1 : P_2 = 1 : 4[/tex]
Given :
The dimensions of the brick are :
- 20 cm
- 10 cm
- 5 cm
Solution :
[tex]\large\boxed{\boxed{\mathrm{pressure = \frac{Force}{Area}}}}[/tex]
The largest surface area would be : -
[tex]➢ \: \: 20 \times 10[/tex]
[tex]➢ \: \: 200 \: \: cm {}^{2} [/tex]
[tex]➢ \: \: 0.02\: \: m {}^{2} [/tex]
(product of two greater sides)
pressure applied by greatest surface area of brick :
[tex]➢ \: \: \dfrac{20}{0.02} [/tex]
[tex]➢ \: \: \dfrac{20}{2} \times 100[/tex]
[tex]➢ \: \: 1000 \: \: pascals[/tex]
The smallest surface area would be : -
[tex]➢ \: \: 10 \times 5[/tex]
[tex]➢ \: \: 50 \: \: cm {}^{2} [/tex]
[tex]➢ \: \: 0.005 \: \: m {}^{2} [/tex]
(product of two Smaller sides)
pressure applied by smallest surface area of brick :
[tex]➢ \: \: \dfrac{20}{0.005} [/tex]
[tex]➢ \: \: \dfrac{20}{5} \times 1000[/tex]
[tex]➢ \: \: 4000 \: \: pascals[/tex]
Let's find the ratio :
[tex]➢ \: \: \dfrac{1000}{4000} [/tex]
[tex]➢ \: \: \dfrac{1}{4} [/tex]
[tex]➢ \: \: 1 : 4[/tex]
[tex]\mathrm{✌TeeNForeveR✌}[/tex]