Respuesta :
Answer:
Both a = −4 and a = −1 are true solutions
Step-by-step explanation:
Given
[tex]\sqrt{a + 5} = a + 3[/tex]
[tex]a = -4; a = -1[/tex]
Required
The true statement about the solutions
We have:
[tex]\sqrt{a + 5} = a + 3[/tex]
Square both sides
[tex]a + 5 = (a + 3)^2[/tex]
[tex]a + 5 =a^2 + 6a + 9[/tex]
Collect like terms
[tex]a^2 + 6a - a + 9 - 5 = 0[/tex]
[tex]a^2 + 5a + 4 = 0[/tex]
Expand
[tex]a^2 + 4a + a + 4 = 0[/tex]
Factorize
[tex]a(a + 4) + 1(a + 4) = 0[/tex]
Factor out a + 4
[tex](a + 1)(a + 4) = 0[/tex]
Split:
[tex]a + 1 = 0; a + 4 = 0[/tex]
Solve:
[tex]a =-1; a = -4[/tex]
Answer:
C on 3dge
Step-by-step explanation:
Both a = −4 and a = −1 are true solutions