Respuesta :
Answer:
A) i) w/P = MPN , ( NS ) = 100[ (1-t) w]^2
ii) w = 1.5 , N = 225,
iii) y = 675 ,
iv) 337.5
B) i) ( NS ) = 100[(1-0.6)w]^2
ii) w = 2.372 , N = 90
iii) y = 426.91
iv) 85.839
Explanation:
Given data :
Production function ( y ) = 9k^0.5 N^0.5
MPN = 4.5k^0.5N^-0.5
capital stock ( K ) = 25
labor supply curve ( NS ) = 100[ (1-t) w]^2
assume P = 1
a) Determine
i) equation of labor demand curve = w/P = MPN
where; w = 22.5 N^-0.5 , N=506.25/(w^2)
labor supply curve ( NS ) = 100[ (1-t) w]^2
ii) equilibrium levels of real wage and employment
506.25/(w^2) = 100[(1-t)w]^2 ( equilibrium condition )
w ( equilibrium level of real wage ) = 1.5
equilibrium level of employment = 100[(1-t)w]^2 ; where t = 0 , w = 1.5
= 100 ( 1 * 1.5 )^2
N = 225
iii) level of full-employment y = 9k^0.5 N^0.5 ; where N = 225 , k = 25
= 9(25)^0.5 * (225)^0.5
y = 675
iv) Total after-tax wage income of workers
= w*N = ( 225 * 1.5 ) = 337.5
B) assuming t = 0.6
i) equation of labor demand curve
labor supply curve ( NS ) = 100[(1-0.6)w]^2 = 16 w^2
ii) equilibrium levels ; 16w^2 = 506.25/(w^2).
w( equilibrium real wage ) = 2.372
Equilibrium employment ( N )= 16 * ( 2.372 )^2 =90
iii) level of full employment y = 9k^0.5 * 90^0.5
= 9(25)^0.5 * 90^0.5 = 426.91
iv) Total after tax wage/income of workers
= (1-0.6)*2.372*90 = 85.839