Write the equation of the line that passes through the points (-6,5) and (3,−5). Put your answer in fully reduced point-slope form, unless it is a vertical or horizontal line.

Respuesta :

Answer:

[tex]\displaystyle y-5=-\frac{10}{9}(x+6)[/tex]

Or:

[tex]\displaystyle y+5=-\frac{10}{9}(x-3)[/tex]

Step-by-step explanation:

We want to write the equation of a line that passes through the points (-6, 5) and (3, -5) in point-slope form.

Point-slope form is given by:

[tex]y-y_1=m(x-x_1)[/tex]

Thus, first, we need to find the slope. We can use the slope formula:

[tex]\displaystyle m=\frac{\Delta y}{\Delta x}=\frac{(-5)-(5)}{(3)-(-6)}=\frac{-10}{9}=-\frac{10}{9}[/tex]

Next, we can use either of the two given points. I'll use (-6, 5). So, let (-6, 5) be (x₁, y₁). Substitute:

[tex]\displaystyle y-(5)=-\frac{10}{9}(x-(-6))[/tex]

Or, fully simplified:

[tex]\displaystyle y-5=\frac{-10}{9}(x+6)[/tex]

Using the other point, we will acquire:

[tex]\displaystyle y-(-5)=-\frac{10}{9}(x-(3))[/tex]

Or, simplified:

[tex]\displaystyle y+5=-\frac{10}{9}(x-3)[/tex]