Answer:
[tex]\displaystyle y-5=-\frac{10}{9}(x+6)[/tex]
Or:
[tex]\displaystyle y+5=-\frac{10}{9}(x-3)[/tex]
Step-by-step explanation:
We want to write the equation of a line that passes through the points (-6, 5) and (3, -5) in point-slope form.
Point-slope form is given by:
[tex]y-y_1=m(x-x_1)[/tex]
Thus, first, we need to find the slope. We can use the slope formula:
[tex]\displaystyle m=\frac{\Delta y}{\Delta x}=\frac{(-5)-(5)}{(3)-(-6)}=\frac{-10}{9}=-\frac{10}{9}[/tex]
Next, we can use either of the two given points. I'll use (-6, 5). So, let (-6, 5) be (x₁, y₁). Substitute:
[tex]\displaystyle y-(5)=-\frac{10}{9}(x-(-6))[/tex]
Or, fully simplified:
[tex]\displaystyle y-5=\frac{-10}{9}(x+6)[/tex]
Using the other point, we will acquire:
[tex]\displaystyle y-(-5)=-\frac{10}{9}(x-(3))[/tex]
Or, simplified:
[tex]\displaystyle y+5=-\frac{10}{9}(x-3)[/tex]