Respuesta :

Given:

In a right angle triangle ABC, altitude BD drawn to hypotenuse AC.

AD=3 and, AC=27.

To find:

The length of AB.

Solution:

Draw a figure by using the given information as shown below.

In triangle ABC and ADB,

[tex]\angle ABC\cong \angle ADB[/tex]              (Right angles)

[tex]\angle BAC\cong \angle DAB[/tex]              (Common angle)

[tex]\triangle ABC\sim \triangle ADB[/tex]              (AA similarity postulate)

We know that the corresponding parts of congruent triangles are proportional. So,

[tex]\dfrac{AC}{AB}=\dfrac{AB}{AD}[/tex]

After substituting the given values, we get

[tex]\dfrac{27}{AB}=\dfrac{AB}{3}[/tex]

[tex]27\times 3=AB\times AB[/tex]

[tex]81=AB^2[/tex]

Taking square root on both sides, we get

[tex]\sqrt{81}=AB[/tex]

[tex]9=AB[/tex]

Therefore, the length of AB is 9 units.

Ver imagen erinna