Answer:
Step-by-step explanation:
Average rate of change of a function between interval x = a and x = b is given by,
Average rate of change = [tex]\frac{f(b)-f(a)}{b-a}[/tex]
Average rate of change of the function in the interval [-4, -2]
= [tex]\frac{f(-2)-f(-4)}{-2-(-4)}[/tex]
= [tex]\frac{0-(-12)}{-2+4}[/tex]
= 6
Average rate of change in the interval [-2, 1]
= [tex]\frac{f(1)-f(-2)}{1-(-2)}[/tex]
= [tex]\frac{3-0}{1-(-2)}[/tex]
= 1
Average rate of change in the interval [-3, 1]
= [tex]\frac{f(1)-f(-3)}{1-(-3)}[/tex]
= [tex]\frac{3-(-5)}{1+3}[/tex]
= 2
Average rate of change in the interval [-4, 0]
= [tex]\frac{f(0)-f(-4)}{0-(-4)}[/tex]
= [tex]\frac{4-(-12)}{0-(-4)}[/tex]
= 4