What is the difference of the rational expressions below? 4/x^3 - 2x-1/3x

Answer:
C
Step-by-step explanation:
Given
[tex]\frac{4}{x^3}[/tex] - [tex]\frac{2x-1}{3x}[/tex]
Multiplying the numerator/ denominator of the first fraction by 3 and the numerator/denominator of the second fraction by x² will ensure that the fractions have a common denominator.
= [tex]\frac{3(4)}{3x^3}[/tex] - [tex]\frac{x^2(2x-1)}{3x^3}[/tex]
= [tex]\frac{12}{3x^3}[/tex] - [tex]\frac{2x^3-x^2}{3x^3}[/tex] ← combine terms on numerator
= [tex]\frac{12-2x^3+x^2}{3x^3}[/tex]
= [tex]\frac{-2x^3+x^2+12}{3x^3}[/tex] → C