Respuesta :

Answer:

C

Step-by-step explanation:

Given

[tex]\frac{4}{x^3}[/tex] - [tex]\frac{2x-1}{3x}[/tex]

Multiplying the numerator/ denominator of the first fraction by 3 and the numerator/denominator of the second fraction by x² will ensure that the fractions have a common denominator.

= [tex]\frac{3(4)}{3x^3}[/tex] - [tex]\frac{x^2(2x-1)}{3x^3}[/tex]

= [tex]\frac{12}{3x^3}[/tex] - [tex]\frac{2x^3-x^2}{3x^3}[/tex] ← combine terms on numerator

= [tex]\frac{12-2x^3+x^2}{3x^3}[/tex]

= [tex]\frac{-2x^3+x^2+12}{3x^3}[/tex] → C