Answer: The lowest possible frequency of sound for which this is possible is 212.5 Hz.
Explanation:
It is known that formula for path difference is as follows.
[tex]\Delta L = (n + \frac{1}{2}) \times \frac{\lambda}{2}[/tex] ... (1)
where, n = 0, 1, 2, and so on
As John is standing perpendicular to the line joining the speakers. So, the value of [tex]L_{1}[/tex] is calculated as follows.
[tex]L_{1} = \sqrt{(2)^{2} + (5)^{2}}\\= 5.4 m[/tex]
Hence, path difference is as follows.
[tex]\Delta L = (5.4 - 5) m = 0.4 m[/tex]
For lowest frequency, the value of n = 0.
[tex]\Delta L = (0 + \frac{1}{2}) \times \frac{\lambda}{2} = \frac{\lambda}{4}[/tex]
[tex]\lambda = 4 \Delta L[/tex]
where,
[tex]\lambda[/tex] = wavelength
The relation between wavelength, speed and frequency is as follows.
[tex]\lambda = \frac{\nu}{f}\\4 \Delta L = \frac{\nu}{f}\\[/tex]
where,
[tex]\nu[/tex] = speed
f = frequency
Substitute the values into above formula as follows.
[tex]f = \frac{\nu}{4 \Delta L}\\f = \frac{340}{4 \times 0.4 m}\\= 212.5 Hz[/tex]
Thus, we can conclude that the lowest possible frequency of sound for which this is possible is 212.5 Hz.