Respuesta :

Answer:

Step-by-step explanation:

cos x cos (3x)+sinx sin (3x)=0

cos (x-3x)=0

cos(-2x)=0

cos 2x=0=cos (2n+1)π/2

where n=0,1,2,3∞∞∞∞

2x=(2n+1)π/2

x=(2n+1)π/4

put n=0,1,2,3

x=π/4,3π/4,5π/4,7π/4

The solution of equation cos(x) cox(3x) + sin(x) sin(3x) = 0 are [tex]\bold{x=\frac{\pi}{4},~\frac{3\pi}{4}}[/tex]

What is equation?

It is a mathematical statement which consists of equal symbol between two algebraic expressions."

Formula for cos(A - B):

cos(A - B) = cos(A)cos(B) + sin(A)sin(B)

For given question,

We have been given an equation cos x cox(3x)+sin x sin(3x)=0 .............(i)

We know, cos(A - B) = cos(A)cos(B) + sin(A)sin(B)

So, cos x cox(3x) + sin x sin(3x) = cos(x - 3x)

So, the equation (i) becomes,

⇒ cos(x - 3x) = 0

⇒ cos(-2x) = 0                      ..................(ii)

We know, for any angle m,

cos(-m) = cos(m)

⇒ cos(-2x) = cos(2x)

So the equation (ii) would be,

cos(2x) = 0

We know, in the interval [0, 2π]

cos([tex]\frac{\pi}{2}[/tex]) = 0 and cos([tex]\frac{3\pi}{2}[/tex]) = 0

This means, [tex]2x=\frac{\pi}{2}[/tex]      or    [tex]2x=\frac{3\pi}{2}[/tex]

⇒ [tex]x = \frac{\pi}{4}[/tex]      or    [tex]x=\frac{3\pi}{4}[/tex]

Therefore, the solution of equation cos(x) cox(3x)+sin(x) sin(3x)=0 are [tex]\bold{x=\frac{\pi}{4},~\frac{3\pi}{4}}[/tex]

Learn more about cosine angle here:

https://brainly.com/question/13094664

#SPJ2