Respuesta :
Answer:
Both x = -1 and x = -7 are true solutions.
Step-by-step explanation:
Given
[tex]x + 1 = \sqrt{-6x - 6}[/tex]
Required
Solve
[tex]x + 1 = \sqrt{-6x - 6}[/tex]
Take square of both sides
[tex](x + 1)^2 = -6x - 6[/tex]
Open bracket
[tex]x^2 + 2x + 1 = -6x -6[/tex]
Express as:
[tex]x^2 + 2x+6x + 1 +6=0[/tex]
[tex]x^2 + 8x + 7=0[/tex]
Expand
[tex]x^2 + 7x +x + 7=0[/tex]
Factorize
[tex]x(x + 7) + 1(x + 7) = 0[/tex]
Factor out x + 7
[tex](x + 1)(x + 7) = 0[/tex]
Solve:
[tex]x + 1 =0\ or\ x + 7 = 0[/tex]
So:
[tex]x = -1\ or\ x=-7[/tex]
Answer:
b 3dge
Step-by-step explanation:
Both x=-1 are x=-7 true solutions.