Respuesta :

Answer:

[tex]y = -\frac{5}{3}x+\frac{2}{3}[/tex]

Step-by-step explanation:

Given

[tex]f(-2) = 4[/tex]

[tex]f(1) = -1[/tex]

Required

The equation of the function

The given parameters means that:

[tex](x_1,y_1) = (-2,4)[/tex]

[tex](x_2,y_2) = (1,-1)[/tex]

Calculate the slope (m)

[tex]m = \frac{y_2 -y_1}{x_2 -x_1}[/tex]

[tex]m = \frac{-1-4}{1--2}[/tex]

[tex]m = \frac{-5}{3}[/tex]

The equation is then calculated using:

[tex]y = m(x - x_1) + y_1[/tex]

This gives:

[tex]y =\frac{-5}{3}(x--2)+4[/tex]

[tex]y =\frac{-5}{3}(x+2)+4[/tex]

Open bracket

[tex]y = -\frac{5}{3}x-\frac{10}{3}+4[/tex]

Take LCM

[tex]y = -\frac{5}{3}x+\frac{-10+12}{3}[/tex]

[tex]y = -\frac{5}{3}x+\frac{2}{3}[/tex]