A box of 10 flashbulbs contains defective . A random sample of 2 is selected and tested. Let X be the random variable associated with the number of defective bulbs in the sample. a. Find the probability distribution of X. b. Find the expected number of defective bulbs in a sample.

Respuesta :

Answer:

(a)

[tex]Pr(x = 0) = \frac{^7C_2}{45}[/tex]            [tex]Pr(x = 1) = \frac{^7C_1 * ^3C_1}{45}[/tex]            [tex]Pr(x = 2) = \frac{^3C_2}{45}[/tex]

(b)

[tex]E(x) = \frac{3}{5}[/tex]

Step-by-step explanation:

Given

[tex]n = 10[/tex] --- flashbulbs

[tex]k = 3[/tex] --- defective bulbs

[tex]r = 2[/tex] --- selected

Solving (a): The distribution of x

The total outcome is: [tex]^nC_r[/tex]

This gives:

[tex]^{10}C_2 = 45[/tex]

Having 3 defective bulbs means 7 are not.

When there is no defective bulb among the selected, the probability is:

[tex]Pr(x = 0) = \frac{^7C_2}{45}[/tex]

When 1 is defective:

[tex]Pr(x = 1) = \frac{^7C_1 * ^3C_2}{45}[/tex]

When both are defective

[tex]Pr(x = 2) = \frac{^3C_2}{45}[/tex]

So, the distribution is:

[tex]Pr(x = 0) = \frac{^7C_2}{45}[/tex]

[tex]Pr(x = 1) = \frac{^7C_1 * ^3C_1}{45}[/tex]

[tex]Pr(x = 2) = \frac{^3C_2}{45}[/tex]

Solving (b): The expected value

This is calculated as:

[tex]E(x) = \sum x * Pr(x)[/tex]

So, we have:

[tex]E(x) = x_1 * Pr(x_1) +x_2 * Pr(x_2) + ............... + x_n * Pr(x_n)[/tex]

The equation becomes:

[tex]E(x) = 0* Pr(x=0) +1* Pr(x=1) + 2 * Pr(x=2)[/tex]

[tex]E(x) = 1* Pr(x=1) + 2 * Pr(x=2)[/tex]

[tex]E(x) = Pr(x=1) + 2 * Pr(x=2)[/tex]

From the distribution in (a), we have:

[tex]E(x) = \frac{^7C_1 * ^3C_1}{45} + 2 * \frac{^3C_2}{45}[/tex]

[tex]E(x) = \frac{7 * 3}{45} + 2 * \frac{3}{45}[/tex]

[tex]E(x) = \frac{21}{45} + \frac{6}{45}[/tex]

[tex]E(x) = \frac{21+6}{45}[/tex]

[tex]E(x) = \frac{27}{45}[/tex]

Simplify

[tex]E(x) = \frac{3}{5}[/tex]