When air expands adiabatically (without gaining or losing heat), its pressure P and volume V are related by the equation PV^1.4 = C, where C is a constant. Suppose that at a certain instant the volume is 400 cm^3 and the pressure is 80 kPa and is decreasing at a rate of 10 kPa/min. At what rate is the volume increasing at this instant?

Respuesta :

Answer:

The volume increases at 35.71cm^3/min

Step-by-step explanation:

Given

[tex]PV^{1.4} = C[/tex]

[tex]V = 400cm^3[/tex]

[tex]P =80kPa[/tex]

[tex]\frac{dP}{dt} =-10kPa/min[/tex]

Required

Rate at which volume increases

[tex]PV^{1.4} = C[/tex]       [tex]V = 400cm^3[/tex]       [tex]P =80kPa[/tex]

Differentiate: [tex]PV^{1.4} = C[/tex]  

[tex]P*\frac{dV^{1.4}}{dt} +V^{1.4}*\frac{dP}{dt} = \frac{d}{dt}C[/tex]

By differentiating C, we have:

[tex]P*\frac{dV^{1.4}}{dt} +V^{1.4}*\frac{dP}{dt} = 0[/tex]

Rewrite as:

[tex]P*(1.4)*V^{0.4}* \frac{dV}{dt} + V^{1.4}*\frac{dP}{dt} = 0[/tex]

Solve for [tex]\frac{dV}{dt}[/tex]

[tex]P*(1.4)*V^{0.4}* \frac{dV}{dt} =- V^{1.4}*\frac{dP}{dt}[/tex]

[tex]\frac{dV}{dt} =- \frac{V^{1.4}*\frac{dP}{dt} }{P*(1.4)*V^{0.4}}[/tex]

Substitute values

[tex]\frac{dV}{dt} =- \frac{400^{1.4}*-10 }{80*(1.4)*400^{0.4}}[/tex]

[tex]\frac{dV}{dt} =\frac{400*10 }{80*1.4}[/tex]

[tex]\frac{dV}{dt} =\frac{4000 }{112}[/tex]

[tex]\frac{dV}{dt} =35.71cm^3/min[/tex]