Respuesta :

Given:

Number of red marbles = 5

Number of blue marbles = 4

Number of yellow marbles = 3

To find:

The probability of pulling a red marble, then pulling a blue marble, without replacement.

Solution:

Probability formula:

[tex]\text{Probability}=\dfrac{\text{Favorable outcomes}}{\text{Total outcomes}}[/tex]

We have,

Number of red marbles = 5

Total number of marbles is:

[tex]5+4+3=12[/tex]

Probability of getting a red marble is:

[tex]P(Red)=\dfrac{5}{12}[/tex]

After selecting one red marble, the remaining number of marbles is 11 and the number of blue marbles is 3. So,

[tex]P(Blue)=\dfrac{4}{11}[/tex]

Now, the probability of pulling a red marble, then pulling a blue marble, without replacement is:

[tex]\text{Probability percentage}=P(Red)\times P(Blue)\times 100[/tex]

[tex]\text{Probability}=\dfrac{5}{12}\times \dfrac{4}{11}\times 100[/tex]

[tex]\text{Probability}=15.1515...[/tex]

[tex]\text{Probability}\approx 15.2\%[/tex]

Therefore, the correct option is B.