Respuesta :

Answer:

No real solutions.

Step-by-step explanation:

We want to solve the equation:

[tex]\ln(x-2)+\ln (x+2)=4[/tex]

Recall that:

[tex]\displaystyle \ln a-\ln b=\ln\left(\frac{a}{b}\right)[/tex]

Therefore:

[tex]\displaystyle \ln\left(\frac{x-2}{x+2}\right)=4[/tex]

By Definition:

[tex]\displaystyle e^4=\frac{x-2}{x+2}[/tex]

Cross-multiply:

[tex]e^4(x+2)=x-2[/tex]

Distribute:

[tex]xe^4+2e^4=x-2[/tex]

Isolate the x:

[tex]xe^4-x=-2-2e^4[/tex]

Factor:

[tex]\displaystyle x(e^4-1)=-2-2e^4[/tex]

Divide. Therefore:

[tex]\displaystyle x=\frac{-2-2e^4}{e^4-1}=\frac{2+2e^4}{1-e^4}\approx-2.07[/tex]

However, note that logs cannot be negative and must be nonzero. According to the first logarithm, x > 2 and according to the second, x > -2. Since the answer is not greater than two, there are no real solutions.