Respuesta :

osa16

Answer:

b= (3z-6)/(1+3z)

Step-by-step explanation:

z=(-b+6)/(3b-3)

cross multiple

z(3b-3)=-b+6

open the bracket

3bz-3z=-b+6

make -b the subject of the formula

-b = 3bz-3z-6

-b - 3bz = -3z - 6

factorize the left hand side...

-b(1+3z) = -3z-6

make -b the subject of the formula again

-b = -(3z-6)/(1+3z)

cancel the minus at both sides...

b = (3z-6)/(1+3z)

Answer:

b = [tex]\frac{3z + 6}{3z+1}[/tex]

Step-by-step explanation:

Simply solve for "b" , so the formula will be

b = .....

z = [tex]\frac{-b+6}{3b-3}[/tex] ( b > 0 )

z(3b - 3) = - b + 6

3zb - 3z = - b + 6

3zb + b = 3z + 6

b( 3z + 1 ) = 3z + 6

b =  [tex]\frac{3z + 6}{3z+1}[/tex]