Respuesta :

Step-by-step explanation:

we solve for x

15x-(2/x)>1. /*x

15x^2 -2 > x. /-x

15x^2 -x -2 > 0

Solve the quadratic at zero

15x^2 -x -2=0

using the quadratic formula

x1,2 = [1+-sprt((-1)^2-4(15)(-2))]/2(15)

= [1+- sqrt (121)]/30

= [1+-11]/30

x1= 12/30= 2/5

x2= -10/30= -1/3

therefore this positive parabola is greater than zero or positive when

x< -1/3 and x> 2/5