Respuesta :

Answer:

[tex]x =2[/tex]

Step-by-step explanation:

Given

[tex]\log x\³+ \log5x =5\log2-\log\frac{2}{5}[/tex]

Required

Find x

We have:

[tex]\log x\³+ \log5x =5\log2-\log\frac{2}{5}[/tex]

Apply exponent rule

[tex]\log x\³+ \log5x =\log2^5-\log\frac{2}{5}[/tex]

[tex]\log x\³+ \log5x =\log32 -\log\frac{2}{5}[/tex]

Apply product and quotient rules of logarithm

[tex]\log (x\³* 5x) =\log(32 \div \frac{2}{5})[/tex]

[tex]\log (5x^4) =\log(80)[/tex]

Cancel log on both sides

[tex]5x^4 = 80[/tex]

Divide by 5

[tex]x^4 = 16[/tex]

Take 4th roots of both sides

[tex]x =2[/tex]