Respuesta :

Answer:

[tex]a. \ \dfrac{625 \cdot m}{27 \cdot n^{11}}[/tex]

[tex]b. \ \dfrac{x^{3 \cdot m - 2}}{y^{ 3 + n}}[/tex]

Step-by-step explanation:

The question relates with rules of indices

(a) The give expression is presented as follows;

[tex]\dfrac{m^3 \times \left (n^{-2} \right )^4 \times (5 \cdot m)^4}{\left (3 \cdot m^2 \cdot n \right )^3}[/tex]

By expanding the expression, we get;

[tex]\dfrac{m^3 \times n^{-8} \times 5^4 \times m^4}{\left 3^3 \times m^6 \times n^3}[/tex]

Collecting like terms gives;

[tex]\dfrac{m^{(3 + 4 - 6)} \times 5^4}{ 3^3 \times n^{3 + 8}} = \dfrac{625 \cdot m}{27 \cdot n^{11}}[/tex]

[tex]\dfrac{m^3 \times \left (n^{-2} \right )^4 \times (5 \cdot m)^4}{\left (3 \cdot m^2 \cdot n \right )^3}= \dfrac{625 \cdot m}{27 \cdot n^{11}}[/tex]

(b) The given expression is presented as follows;

[tex]x^{3 \cdot m + 2} \times \left (y^{n - 1} \right )^3 \div (x \cdot y^n)^4[/tex]

Therefore, we get;

[tex]x^{3 \cdot m + 2} \times \left (y^{n - 1} \right )^3 \times x^{-4} \times y^{-4 \cdot n}[/tex]

Collecting like terms gives;

[tex]x^{3 \cdot m + 2 - 4} \times \left (y^{3 \cdot n - 3 -4 \cdot n}} \right ) = x^{3 \cdot m - 2} \times \left (y^{ - 3 -n}} \right ) = x^{3 \cdot m - 2} \div \left (y^{ 3 + n}} \right )[/tex]

[tex]x^{3 \cdot m - 2} \div \left (y^{ 3 + n}} \right ) = \dfrac{x^{3 \cdot m - 2}}{y^{ 3 + n}}[/tex]

[tex]x^{3 \cdot m + 2} \times \left (y^{n - 1} \right )^3 \times x^{-4} \times y^{-4 \cdot n} =\dfrac{x^{3 \cdot m - 2}}{y^{ 3 + n}}[/tex]