Yeah uh I have no idea how to do this.....
Use exponent laws to simplify this :
9√(a^-5 b^2)

The answer is 9b / a^5/2 I just don't know how so please show steps! Thank you

Respuesta :

Answer:

9b /a^5/2

Step-by-step explanation:

9√(a^-5 b^2)

9 sqrt( a^ -5 b^2)

Rewriting sqrt as ^1/2

9 ( a^ -5 b^2)^1/2

9 ( a^ -5) ^1/2 ( b^2)^1/2

we know that  an exponent to an exponent means multiply

9 a^ (-5*1/2)  b^(2*1/2)

9 a^-5/2 b^1

9b a^ -5/2

We know that x^-y = 1/x^y

9b /a^5/2

Answer:

[tex]\frac{9b}{a^{2} }[/tex][tex]\sqrt{\frac{1}{a} }[/tex] should be the answer of the problem that you posted

if you try to solve using [tex]\sqrt{x}[/tex]    as as [tex]x^{\frac{1}{2} }[/tex]

then [tex](a^{-5)} ^{\frac{1}{2} } \\[/tex] =  [tex](a^{-5/2)}[/tex] = [tex]\frac{1}{a^{\frac{5}{2} } }[/tex]

[tex]\frac{1}{a^{\frac{5}{2} } }[/tex] * 9b = [tex]\frac{9b}{a^{\frac{5}{2 } } }[/tex]

Step-by-step explanation:

[tex]9 \sqrt{(a^-5 b^2)}[/tex]

[tex]x^{-1} = \frac{1}{x}[/tex]

[tex]a^{-5} = \frac{1}{a^{5} }[/tex]

[tex]\sqrt{b^{2} } = b[/tex]

[tex]a^{4}[/tex] a's can be removed from the radicle (one will be left in because you have a^5)

[tex]\frac{9b}{a^{2} }[/tex][tex]\sqrt{\frac{1}{a} }[/tex]