Answer:
[tex]y+1=3x[/tex]
OR
[tex]y-2=3(x-1)[/tex]
Step-by-step explanation:
Hi there!
Point-slope form: [tex]y-y_1=m(x-x_1)[/tex] where m is the slope and [tex](x_1,y_1)[/tex] is a point
1) Determine the slope (m)
[tex]m=\displaystyle \frac{y_2-y_1}{x_2-x_1}[/tex] where two points that fall on the line are [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex]
Plug in the points (0,-1) and (1,2):
[tex]m=\displaystyle \frac{2-(-1)}{1-0}\\\\m=\displaystyle \frac{2+1}{1}\\\\m=3[/tex]
Therefore, the slope of the line is 3. Plug this into [tex]y-y_1=m(x-x_1)[/tex]:
[tex]y-y_1=3(x-x_1)[/tex]
2) Plug a point into the equation
[tex]y-y_1=3(x-x_1)[/tex]
Because we're given two points, there are two ways we can write the equation:
[tex]y-y_1=3(x-x_1)y-(-1)=3(x-0)\\y+1=3x[/tex]
OR
[tex]y-y_1=3(x-x_1)\\y-2=3(x-1)[/tex]
I hope this helps!