If you divide any natural number n by 4, you get a remainder r.
Find r if n=13; 34; 43; 100. What is the domain of the
function? What is the range?

Respuesta :

Given:

If you divide any natural number n by 4, you get a remainder r.

To find:

The values of r if [tex]n=13;34;43;100[/tex]. Also find the domain and range.

Solution:

It is given that any natural number n by 4, you get a remainder r.

[tex]\dfrac{n}{4}=q+\dfrac{r}{4}[/tex]

Where, n is a natural number, q is quotient, r is the remainder.

For [tex]n=13[/tex],

[tex]\dfrac{13}{4}=3+\dfrac{1}{4}[/tex]

So, [tex]r=1[/tex].

For [tex]n=34[/tex],

[tex]\dfrac{34}{4}=8+\dfrac{2}{4}[/tex]

So, [tex]r=2[/tex].

For [tex]n=43[/tex],

[tex]\dfrac{43}{4}=10+\dfrac{3}{4}[/tex]

So, [tex]r=3[/tex].

For [tex]n=100[/tex],

[tex]\dfrac{100}{4}=25+\dfrac{0}{4}[/tex]

So, [tex]r=0[/tex].

Therefore, the required value are [tex]r=1,2,3,0[/tex] if [tex]n=13;34;43;100[/tex] respectively.

The domain of the function is [tex]\{13,34,43,100\}[/tex] and the range of the function is [tex]\{1,2,3,0\}[/tex].