Construct the confidence interval for the population standard deviation for the given values. Round your answers to one decimal place. n=21 , s=3.3, and c=0.9

Respuesta :

Answer:

The correct answer is "[tex]2.633< \sigma < 4.480[/tex]".

Step-by-step explanation:

Given:

n = 21

s = 3.3

c = 0.9

now,

[tex]df = n-1[/tex]

    [tex]=20[/tex]

⇒ [tex]x^2_{\frac{\alpha}{2}, n-1 }[/tex] = [tex]x^2_{\frac{0.9}{2}, 21-1 }[/tex]

                  = [tex]31.410[/tex]

⇒ [tex]x^2_{1-\frac{\alpha}{2}, n-1 }[/tex] = [tex]10.851[/tex]

hence,

The 90% Confidence interval will be:

= [tex]\sqrt{\frac{(n-1)s^2}{x^2_{\frac{\alpha}{2}, n-1 }} } < \sigma < \sqrt{\frac{(n-1)s^2}{x^2_{1-\frac{\alpha}{2}, n-1 }}[/tex]

= [tex]\sqrt{\frac{(21-1)3.3^2}{31.410} } < \sigma < \sqrt{\frac{(21.1)3.3^2}{10.851} }[/tex]

= [tex]\sqrt{\frac{20\times 3.3^2}{31.410} } < \sigma < \sqrt{\frac{20\times 3.3^2}{10.851} }[/tex]

= [tex]2.633< \sigma < 4.480[/tex]

Otras preguntas