For the following exercises, find the exact area of the region bounded by the given equations if possible. If you are unable to determine the intersection points analytically, use a calculator to approximate the intersection points with three decimal places and determine the approximate area of the region.
x= √4-y^2 and y^2=1+x^2

Respuesta :

Answer:

[tex]Area = \infty[/tex]

Points of intersection: (1.225,-1.58) and (1.225,1.58)

Step-by-step explanation:

Given

[tex]x = \sqrt{4 - y^2}[/tex]

[tex]y^2 = 1 + x^2[/tex]

Required

The region area

Plot the graphs of [tex]x = \sqrt{4 - y^2}[/tex] and [tex]y^2 = 1 + x^2[/tex]

Make y the subject in both equations

[tex]x = \sqrt{4 - y^2}[/tex]

Square both sides

[tex]x^2 = 4 - y^2[/tex]

Rewrite

[tex]y^2 = 4 - x^2[/tex]

Take square roots

[tex]y = \sqrt{4 - x^2[/tex]

So, we have:

[tex]f(x) = \sqrt{4 - x^2}[/tex]

[tex]y^2 = 1 + x^2[/tex]

Take square roots

[tex]y = \sqrt{1 + x^2}[/tex]

So, we have:

[tex]g(x) = \sqrt{1 + x^2}[/tex]

The point of intersection is:

[tex]f(x) = g(x)[/tex]

[tex]\sqrt{4 - x^2} = \sqrt{1 + x^2}[/tex]

Square both sides

[tex]4 - x^2 = 1 + x^2[/tex]

Collect like terms

[tex]x^2 + x^2 = 4 - 1[/tex]

[tex]2x^2 = 3[/tex]

Divide by 2

[tex]x^2 = 1.5[/tex]

Take square roots

[tex]x = 1.225[/tex]

[tex]g(x) = \sqrt{1 + x^2}[/tex]

[tex]g(x) = \sqrt{1 + 1.5}[/tex]

[tex]g(x) = \sqrt{2.5}[/tex]

[tex]g(x) = \±1.581[/tex]

So, the point of intersection is at: (1.225,-1.58) and (1.225,1.58)

See attachment

From the attached image, we can see that the curves do not enclose

Hence:

[tex]Area = \infty[/tex]

Ver imagen MrRoyal