Respuesta :

Given:

The function is:

[tex]f(x)=\dfrac{1}{x+3}-2[/tex]

To find:

The graph of the given function.

Solution:

We have,

[tex]f(x)=\dfrac{1}{x+3}-2[/tex]

It can be written as:

[tex]f(x)=\dfrac{1-2(x+3)}{x+3}[/tex]

[tex]f(x)=\dfrac{1-2x-6}{x+3}[/tex]

[tex]f(x)=\dfrac{-2x-5}{x+3}[/tex]

Putting [tex]x=0[/tex] to find the y-intercept.

[tex]f(0)=\dfrac{-2(0)-5}{(0)+3}[/tex]

[tex]f(0)=\dfrac{-5}{3}[/tex]

So, the y-intercept is [tex]\dfrac{-5}{3}[/tex].

Putting [tex]f(x)=0[/tex] to find the x-intercept.

[tex]0=\dfrac{-2x-5}{x+3}[/tex]

[tex]0=-2x-5[/tex]

[tex]2x=-5[/tex]

[tex]x=\dfrac{-5}{2}[/tex]

[tex]x=-2.5[/tex]

So, the x-intercept is [tex]-2.5[/tex].

For vertical asymptote, equate the denominator and 0.

[tex]x+3=0[/tex]

[tex]x=-3[/tex]

So, the vertical asymptote is [tex]x=-3[/tex].

The degrees of numerator and denominator are equal, so the horizontal asymptote is the ratio of leading coefficients.

[tex]y=\dfrac{-2}{1}[/tex]

[tex]y=-2[/tex]

So, the horizontal asymptote is [tex]y=-2[/tex].

End behavior of the given function:

[tex]f(x)\to -2[/tex] as [tex]x\to -\infty[/tex]

[tex]f(x)\to -\infty[/tex] as [tex]x\to -3^-[/tex]

[tex]f(x)\to \infty[/tex] as [tex]x\to -3^+[/tex]

[tex]f(x)\to -2[/tex] as [tex]x\to \infty[/tex]

Using all these key features, draw the graph of given function as shown below.

Ver imagen erinna

Answer:

The Answer Is A.

Step-by-step explanation: