Respuesta :

Answer:

cos theta = -1/ 2

Step-by-step explanation:

sin theta = -sqrt(3)/2

Drawing a triangle

We know sin theta = opp/hyp

We can determine the adj side using the Pythagorean theorem

a^2 + b^2 = c^2

adj^2 + (-sqrt(3))^2 = 2^2

adj^2 +3 = 4

adj^2 = 4-3

adj ^2 =1

Taking the square root of each side

adj = 1

We know that since it is in the third quadrant the adj side is negative

adj = -1

cos theta = adj / hyp

cos theta = -1/ 2

Ver imagen wegnerkolmp2741o
msm555

Answer:

Solution given:

Sin[tex]\theta_{1}=\frac{-\sqrt{3}}{2}[/tex]

[tex]\frac{opposite}{hypotenuse}=\frac{-\sqrt{3}}{2}[/tex]

equating corresponding value

opposite=-[tex]\sqrt{3}[/tex]

hypoyenuse=2

adjacent=x

By using Pythagoras law

hypotenuse²=opposite²+adjacent²

2²=-[tex]\sqrt{3²}[/tex]+x²

4=3+x²

x²=4-3

x=[tex]\sqrt{1}=1[/tex]

x=-1

In third quadrant

Cos angle is negative

Cos[tex]\theta_{1}=\frac{-adjacent}{hypotenuse}[/tex]

Cos[tex]\theta_{1}=\frac{-1}{2}[/tex]