50 points! please help!.

Answer:
Solution given:
Sin[tex]\theta_{1}=\frac{-24}{25}[/tex]
[tex]\frac{opposite}{hypotenuse}=\frac{-24}{25}[/tex]
equating corresponding value
opposite=-24
hypoyenuse=25
adjacent=x
By using Pythagoras law
hypotenuse²=opposite²+adjacent²
25²=(-24)²+x²
625=576+x²
x²=625-576
x=49
x=[tex]\sqrt{49}=7[/tex]
In IV quadrant
Cos angle is positive
Cos[tex]\theta_{1}=\frac{adjacent}{hypotenuse}[/tex]
Answer:
cos theta = 7/25
Step-by-step explanation:
sin theta = opp / hyp
We can find the adj side by using the pythagorean theorem
adj ^2 + opp ^2 = hyp^2
adj^2 + (-24)^2 = 25^2
adj^2 +576 = 625
adj^2 =625 -576
adj^2 = 49
Taking the square root of each side
adj = 7
Since we are in the 4th quadrant, adj is positive
cos theta = adj / hyp
cos theta = 7/25