If a sine curve has a vertical shift down 19 units with an amplitude of 21, what will the minimum and maximum values be? (i.e. how high and low will the graph go?)
Min Value:
Max Value:

Respuesta :

Given:

Amplitude = 21

Vertical shift = 19 units down

To find:

The maximum and the minimum value.

Solution:

The general form of sine function is:

[tex]y=A\sin (Bx+C)+D[/tex]

Where, |A| is amplitude, [tex]\dfrac{2\pi}{B}[/tex] is period, [tex]-\dfrac{C}{B}[/tex] is phase shift and D is the vertical shift.

Here,

[tex]Maximum=D+A[/tex]

[tex]Minimum=D-A[/tex]

We have,

Amplitude: [tex]A = 21[/tex]

Vertical shift: [tex]D=-19[/tex]

Negative sign means shifts downwards.

Now,

[tex]Maximum=D+A[/tex]

[tex]Maximum=-19+21[/tex]

[tex]Maximum=2[/tex]

And,

[tex]Minimum=D-A[/tex]

[tex]Minimum=-19-21[/tex]

[tex]Minimum=-40[/tex]

Therefore, the minimum value is -40 and the maximum value is 2.