Respuesta :

Space

Answer:

[tex]\displaystyle \int {84} \, dx = 84x + C[/tex]

General Formulas and Concepts:

Calculus

Integration

  • Integrals
  • Definite/Indefinite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]

Integration Property [Multiplied Constant]:                                                         [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle \int {84} \, dx[/tex]

Step 2: Integrate

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 [tex]\displaystyle \int {84} \, dx = 84\int {} \, dx[/tex]
  2. [Integral] Reverse Power Rule:                                                                     [tex]\displaystyle \int {84} \, dx = 84x + C[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit:  Integrations