Respuesta :

msm555

Answer:

Solution given:

Right angled triangle ABC is drawn where <C=[tex]\theta[/tex]

we know that

[tex]\displaystyle Sin\theta=\frac{opposite}{hypotenuse} =\frac{AB}{AC}[/tex]

[tex]\displaystyle Cos\theta=\frac{adjacent}{hypotenuse}=\frac{BC}{AC} [/tex]

Now

left hand side

[tex] \displaystyle {sin}^{2} \theta + {cos}^{2} \:\theta[/tex]

Substituting value

[tex](\frac{AB}{AC})²+(\frac{BC}{AC})²[/tex]

distributing power

[tex]\frac{AB²}{AC²}+\frac{BC²}{AC²}[/tex]

Taking L.C.M

[tex]\displaystyle \frac{AB²+BC²}{AC²}[/tex]....[I]

In ∆ABC By using Pythagoras law we get

[tex]\boxed{\green{\bold{Opposite²+adjacent²=hypotenuse²}}}[/tex]

AB²+BC²=AC²

Substituting value of AB²+BC² in equation [I]

we get

[tex]\displaystyle \frac{AC²}{AC²}[/tex]

=1

Right hand side

proved

Ver imagen msm555