Respuesta :

Step-by-step explanation:

5.

[tex](5 + 4 \sqrt{7} ){x}^{2} + (4 - 2 \sqrt{7} ) x- 1 = 0[/tex]

Simplify both radicals.

[tex](5 + \sqrt{112) {x}^{2} } + (4 - \sqrt{28} )x - 1 = 0[/tex]

Apply Quadratic Formula

First. find the discramnint.

[tex](4 - \sqrt{28} ) {}^{2} - 4(5 + \sqrt{112} )( - 1) = 64[/tex]

Now find the divisor 2a.

[tex]2(5 + \sqrt{112} ) = 10 + 8 \sqrt{7} [/tex]

Then,take the square root of the discrimant.

[tex] \sqrt{64} = 8[/tex]

Finally, add -b.

[tex] - (4 + 2 \sqrt{7} )[/tex]

So our possible root is

[tex] - (4 + 2 \sqrt{7} ) + \frac{8}{10 + 8 \sqrt{7} } [/tex]

Which simplified gives us

[tex] \frac{ 4 + 2 \sqrt{7} }{10 + 8 \sqrt{7} } [/tex]

Rationalize the denominator.

[tex] \frac{4 + 2 \sqrt{7} }{10 + 8 \sqrt{7} } \times \frac{10 - 8 \sqrt{7} }{10 - 8 \sqrt{7} } = \frac{ - 72 - 12 \sqrt{7} }{ - 348} [/tex]

Which simplified gives us

[tex] \frac{6 + \sqrt{7} }{29} [/tex].

6. The answer is 2.

9514 1404 393

Answer:

  5. x = (6 +√7)/29; a=6, b=1, c=29

  6. x = 2

Step-by-step explanation:

5.

The quadratic formula can be used, where a=(5+4√7), b=(4-2√7), c=-1.

  [tex]x=\dfrac{-b+\sqrt{b^2-4ac}}{2a}=\dfrac{-(4-2\sqrt{7})+\sqrt{(4-2\sqrt{7})^2-4(5+4\sqrt{7}})(-1)}{2(5+4\sqrt{7})}\\\\=\dfrac{-4+2\sqrt{7}+\sqrt{16-16\sqrt{7}+28+20+16\sqrt{7}}}{10+8\sqrt{7}}=\dfrac{4+2\sqrt{7}}{2(5+4\sqrt{7})}\\\\=\dfrac{(2+\sqrt{7})(5-4\sqrt{7})}{(5+4\sqrt{7})(5-4\sqrt{7})}=\dfrac{10-3\sqrt{7}-28}{25-112}=\boxed{\dfrac{6+\sqrt{7}}{29}}[/tex]

__

6.

Use the substitution z=3^x to put the equation in the form ...

  z² -3z -54 = 0

  (z -9)(z +6) = 0 . . . . . factor

  z = 9 or -6 . . . . . . . . value of z that make the factors zero

Only the positive solution is useful, since 3^x cannot be negative.

  z = 9 = 3^2 = 3^x . . . . use the value of z to find x

  x = 2