Respuesta :

Answer:

Step-by-step explanation:

By applying tangent rule in the given right triangle AOB,

tan(30°) = [tex]\frac{\text{Opposite side}}{\text{Adjacent side}}[/tex]

[tex]\frac{1}{\sqrt{3}}=\frac{BO}{OA}[/tex]

[tex]OA=BO(\sqrt{3})[/tex]

By applying tangent rule in the given right triangle BOC,

tan(60°) = [tex]\frac{OC}{BO}[/tex]

OC = BO(√3)

OA + OC = AC

[tex]BO(\sqrt{3})+BO(\sqrt{3}) =60[/tex]

2√3(BO) = 60

BO = 10√3

OC = BO(√3)

OC = (10√3)(√3)

OC = 30

By applying tangent rule in right triangle DOC,

tan(60°) = [tex]\frac{OD}{OC}[/tex]

OD = OC(√3)

OD = 30√3

Since, BD = BO + OD

BD = 10√3 + 30√3

BD = 40√3

      ≈ 69.3

Ver imagen eudora