Answer:
The correct answer is "0.7289".
Step-by-step explanation:
The given values are:
Mean,
[tex]\mu = 15.5[/tex]
Standard deviation,
[tex]\sigma = 3.6[/tex]
As we know,
⇒ [tex]z = \frac{(x - \mu)}{\sigma}[/tex]
The probability will be:
⇒ [tex]P(11< x< 19) = P(\frac{11-15.5}{3.6} <z<\frac{19-15.5}{3.6})[/tex]
[tex]=P(z< 0.9722)-P(z< -1.25)[/tex]
By using the z table, we get
[tex]=0.8345-0.1056[/tex]
[tex]=0.7289[/tex]