Answer:
- The quadrilateral is a rectangle
- [tex]Perimeter=8\sqrt{2} \,\,Unit[/tex]
- [tex]Area=6\,\,sq.unit[/tex]
Step-by-step explanation:
Given,
[tex]A=(0,0)\\B=(1,1)\\C=(4,-2)\\D=(3,-3)[/tex]
Now,
[tex]Slope\,\,for\,\,AB=\frac{1-0}{1-0} =1\\\\Slope\,\,for\,\,CD=\frac{-3+2}{3-4} =1\\\\Slope\,\,for\,\,AD=\frac{-3-0}{3-0} =-1\\\\Slope\,\,for\,\,BC=\frac{-2-1}{4-1} =-1\\\\So,AB||CD\,\,and\,\,AD||BC[/tex]
[tex]AB=\sqrt{(1-0)^2+(1-0)^2}=\sqrt{2}\\BC=\sqrt{(4-1)^2+(-2-1)^2}=3\sqrt{2}\\CD=\sqrt{(3-4)^2+(-3+2)^2}=\sqrt{2}\\AD=\sqrt{(3-0)^2+(-3-0)^2}=3\sqrt{2}\\\\So,\,\,AB=CD,AD=BC\\The\,\,quadrilateral\,\,is\,\,a\,\,rectangle[/tex]
[tex]Perimeter=2*(AB+AD)=2*(BC+CD)\\=2*(\sqrt{2}+3\sqrt{2})=8\sqrt{2} \,\,Unit[/tex]
[tex]Area=AB*AD=BC*CD=\sqrt{2} *3\sqrt{2}=6\,\,sq.unit[/tex]
Hope you have understood this.....
ask me if you have any confusion.....
if you liked it pls mark it as the brainliest