Respuesta :
Step-by-step explanation:
The domain of a function is the range of x such that the function is defined.
Now we know the function
[tex]f(x) = \frac{1}{ {x}^{2} + 3x - 4 }[/tex]
is only defined when the denominator is not zero, in other words, when
[tex] {x}^{2} +3x - 4 \neq \: 0[/tex]
or
[tex](x + 4)(x - 1) \neq0[/tex]
[tex]x \ne-4 [/tex]
and
[tex]x \neq +1[/tex]

I’m assuming you mean x squared… so
1/(x^2+3x-4)
1/(x+4)(x-1)
{x|x≠1,-4}
Answer:
(negative infinity, -4) U (-4,1) U (1, infinity)
1/(x^2+3x-4)
1/(x+4)(x-1)
{x|x≠1,-4}
Answer:
(negative infinity, -4) U (-4,1) U (1, infinity)