Respuesta :

Step-by-step explanation:

The domain of a function is the range of x such that the function is defined.

Now we know the function

[tex]f(x) = \frac{1}{ {x}^{2} + 3x - 4 }[/tex]

is only defined when the denominator is not zero, in other words, when

[tex] {x}^{2} +3x - 4 \neq \: 0[/tex]

or

[tex](x + 4)(x - 1) \neq0[/tex]

[tex]x \ne-4 [/tex]

and

[tex]x \neq +1[/tex]

Ver imagen Sirious
ozyu
I’m assuming you mean x squared… so

1/(x^2+3x-4)
1/(x+4)(x-1)
{x|x≠1,-4}

Answer:
(negative infinity, -4) U (-4,1) U (1, infinity)