Respuesta :

hokim

Answer:

11

Step-by-step explanation:

d=√(5-(-6))²+(-7-(-7))²

d=√(11²+0²)

d=11

Answer:

[tex]\boxed {\boxed {\sf d= 11}}[/tex]

Step-by-step explanation:

We are asked to find the distance between 2 points. We will use the distance formula.

[tex]d= \sqrt{ (x_2-x_1)^2+(y_2-y_1)^2[/tex]

In this formula, (x₁ , y₁) and (x₂ , y₂) are the points. We are given the points (-6, -7) and (5, -7). If we match the value and the corresponding variable, we see that:

  • x₁ = -6
  • y₁ = -7
  • x₂ = 5
  • y₂ = -7

Substitute these values into the formula.

[tex]d= \sqrt{(5- -6)^2 + (-7--7)^2[/tex]

Solve inside the parentheses. Remember that two back-to-back negative signs become a plus sign.

  • (5 - - 6) = (5 +6) = 11
  • ( -7 - - 7) = (-7 +7) = 0

[tex]d= \sqrt{ (11)^2+(0)^2[/tex]

Solve the exponents.

  • (11)² = 11 * 11 = 121
  • (0)² = 0*0= 0

[tex]d= \sqrt{(121)+(0)[/tex]

Add.

[tex]d= \sqrt{121}[/tex]

[tex]d=11[/tex]

The distance between (-6, -7) and (5, -7) is 11.