Respuesta :
Answer:
q is 4
Step-by-step explanation:
[tex]gradient = \frac{y_{2} - y_{1} }{x _{2} - x _{1} } \\ [/tex]
let gradient of the line joining (4, q) to (6, 5) be x
let gradient of the line joining (0, 0) to (4, q) be y
[tex]y = 2x[/tex]
therefore:
[tex]( \frac{q - 0}{4 - 0} ) = 2( \frac{5 - q}{6 - 4} ) \\ \\ \frac{q}{4} = \frac{2(5 - q)}{2} \\ \\ \frac{q}{4} = 5 - q \\ \\ q = 4(5 - q) \\ q = 20 - 4q[/tex]
collect like terms:
[tex]q + 4q = 20 \\ 5q = 20 \\ q = \frac{20}{5} \\ \\ q = 4[/tex]
The value of q will be "4".
Let,
- The gradient of line joining (4, q) to (6, 5) be "x".
- The gradient of line joining (0, 0) to (4, q) be "y".
As we know,
- [tex]Gradient = \frac{y_2-y_1}{x_2-x_1}[/tex]
- [tex]y = 2x[/tex]
then,
→ [tex]\frac{q-0}{4-0} = 2(\frac{5-q}{6-4} )[/tex]
[tex]\frac{q}{4} = \frac{2(5-q)}{2}[/tex]
[tex]\frac{q}{4} = 5-q[/tex]
By applying cross-multiplication, we get
[tex]q = 4(5-q)[/tex]
[tex]q = 20-4q[/tex]
By adding "4q" both sides, we get
[tex]q+4q= 20-4q+4q[/tex]
[tex]5q = 20[/tex]
[tex]q = \frac{20}{5}[/tex]
[tex]q = 4[/tex]
Thus the above value is correct.
Learn more about gradient here:
https://brainly.com/question/25292773