Respuesta :

Answer:

q is 4

Step-by-step explanation:

[tex]gradient = \frac{y_{2} - y_{1} }{x _{2} - x _{1} } \\ [/tex]

let gradient of the line joining (4, q) to (6, 5) be x

let gradient of the line joining (0, 0) to (4, q) be y

[tex]y = 2x[/tex]

therefore:

[tex]( \frac{q - 0}{4 - 0} ) = 2( \frac{5 - q}{6 - 4} ) \\ \\ \frac{q}{4} = \frac{2(5 - q)}{2} \\ \\ \frac{q}{4} = 5 - q \\ \\ q = 4(5 - q) \\ q = 20 - 4q[/tex]

collect like terms:

[tex]q + 4q = 20 \\ 5q = 20 \\ q = \frac{20}{5} \\ \\ q = 4[/tex]

The value of q will be "4".

Let,

  • The gradient of line joining (4, q) to (6, 5) be "x".
  • The gradient of line joining (0, 0) to (4, q) be "y".

As we know,

  • [tex]Gradient = \frac{y_2-y_1}{x_2-x_1}[/tex]
  • [tex]y = 2x[/tex]

then,

→ [tex]\frac{q-0}{4-0} = 2(\frac{5-q}{6-4} )[/tex]

      [tex]\frac{q}{4} = \frac{2(5-q)}{2}[/tex]

      [tex]\frac{q}{4} = 5-q[/tex]

By applying cross-multiplication, we get

      [tex]q = 4(5-q)[/tex]

      [tex]q = 20-4q[/tex]

By adding "4q" both sides, we get

[tex]q+4q= 20-4q+4q[/tex]

     [tex]5q = 20[/tex]

       [tex]q = \frac{20}{5}[/tex]

       [tex]q = 4[/tex]

Thus the above value is correct.

Learn more about gradient here:

https://brainly.com/question/25292773