simplify simplify simplify simplify

[tex]\boxed{\sf a^m\times a^n=a^{m+n}}[/tex]
[tex]\boxed{\sf a^m\div a^n=a^{m-n}}[/tex]
[tex]\\ \sf\longmapsto 3^{-6}\times( 3^4\div 3^0)^2[/tex]
[tex]\\ \sf\longmapsto 3^{-6}\times (3^{4-0})^2[/tex]
[tex]\\ \sf\longmapsto 3^{-6}\times 3^{4(2)}[/tex]
[tex]\\ \sf\longmapsto 3^{-6}\times 3^8[/tex]
[tex]\\ \sf\longmapsto 3^{-6+8}[/tex]
[tex]\\ \sf\longmapsto 3^2[/tex]
Answer:
[tex] {3}^{2} [/tex]
Step-by-step explanation:
[tex] {3}^{ - 6} \times ( {3}^{4} \div {3}^{0} {)}^{2} [/tex]
[tex] {3}^{4} \div {3}^{0} = {3}^{4 + 0} = {3}^{4} [/tex]
[tex] {3}^{ - 6} \times ( {3}^{4} {)}^{2} [/tex]
[tex]( {3}^{4} {)}^{2} = {3}^{4 \times 2} = {3}^{8} [/tex]
[tex] {3}^{ - 6} \times {3}^{8} = {3}^{ - 6 + 8} = {3}^{2} [/tex]
[tex] \boxed{\green{= {3}^{2} }}[/tex]