A car, initially traveling 28.0ft/s, steadily speeds up to 50.0ft/s in 7.40s. Determine all unknowns and answer the following question.
How far did the car travel during this time?

Respuesta :

Explanation:

Given:

[tex]v_0 = 28.0\:\text{ft/s}[/tex]

[tex]v = 50.0\:\text{ft/s}[/tex]

[tex]t = 7.40\:\text{s}[/tex]

First, we calculate the acceleration of the car during this time:

[tex]v = v_0 + at \Rightarrow a = \dfrac{v - v_0}{t}[/tex]

Plugging in the given values, we get

[tex]a = \dfrac{50.0\:\text{ft/s} - 28.0\:\text{ft/s}}{7.40\:\text{s}} = 2.97\:\text{ft/s}^2[/tex]

Now that we have the value for the acceleration, we can solve for the distance traveled during the time t:

[tex]x = v_0t + \frac{1}{2}at^2[/tex]

[tex]\:\:\:\:=(28.0\:\text{ft/s})(7.40\:\text{s})[/tex]

[tex]\:\:\:\:\:\:\:\:\:\:\:\:+ \frac{1}{2}(2.97\:\text{ft/s}^2)(7.40\:\text{s})^2[/tex]

[tex]\:\:\:\:= 289\:\text{ft}[/tex]