Respuesta :

The solution for the given expression is: [tex]\frac{-1+ i*\sqrt{19} }{2}[/tex] and [tex]\frac{-1- i*\sqrt{19} }{2}[/tex].

What is a Quadratic Function?

The quadratic function can represent a quadratic equation in the Standard form: ax²+bx+c=0 where: a, b and c are your respective coefficients. In the quadratic function the coefficient "a" must be different than zero (a≠0) and the degree of the function must be equal to 2.

For solving a quadratic function you should find the discriminant: D=b²-4ac and after that use this variable in the formula: [tex]x=\frac{-b\pm \sqrt{D} }{2a}[/tex]

Properties of Multiplication

The properties of multiplication are:

  •    Distributive:  a(b±c)=  ab±ac
  •    Comutative:   a . b = b. a
  •    Associative:    a(b+c)=  c(a+b)
  •    Identity: b.1=b

Here, you should apply the distributive property for solving this expression.

x*(2x)+2*(x+5) = 2x²+2x+10

After that, you should solve the previous quadratic equation.

D=b²-4ac=4-4*2*10=4-80= -76

Then,

[tex]x_{1,2}=\frac{-2\pm \sqrt{-76} }{2*2}=\frac{-2\pm i*\sqrt{76} }{4}=\frac{-2\pm i*2\sqrt{19} }{4}=\frac{-1\pm i*\sqrt{19} }{2}[/tex]

Read more about the quadratic function here:

brainly.com/question/1497716

#SPJ1