Respuesta :

Answer:

x = 35

Step-by-step explanation:

Sum of angles of triangle = 180°

  • 60 + 60 + 4x - 80 = 180
  • 40 + 4x = 180
  • 4x = 140
  • x = 140/4
  • x = 35°

❒ Required Solution:

  • We are here to find the three angles with the help of the angle sum property (Sum of the angles of a triangle = 180°). So, using this property we can find all the angles.

❍ According to the question :

[tex]\\ \tt \implies \: 60{}^{ \circ} + 60{}^{ \circ} +(4x - 80) {}^{ \circ} = 180{}^{ \circ} \\ \\ \\ \implies \tt \: 120{}^{ \circ} - 80{}^{ \circ} + 4x = 180{}^{ \circ} \: \: \: \: \: \: \\ \\ \\ \implies \tt 40{}^{ \circ} + 4x = 180{}^{ \circ} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \\ \implies \tt \: 4x = 180{}^{ \circ} - 140{}^{ \circ} \: \: \: \: \: \: \\ \\ \\ \tt \implies \: 4x = 140{}^{ \circ} \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \\ \implies \tt \: x = \frac{140}{4} \: \: \: \: \: \: \: \: \: \: \\ \\ \\ \tt \implies \: { \boxed{ \mathfrak{ \pmb{ \pink{x = 35}}}}} \bigstar \\ \\ \\ [/tex]