Respuesta :

The number of edges can be calculated from the number of vertices.

  • There are 14 vertices for 105 edges
  • There are 200 vertices for 19900 edges

The variable N is used to always represent the number of vertices.

So, we represent the edges as:

[tex]E \to Edges[/tex]

(a) The value of N for 105 edges

The relationship between N and E is:

[tex]E = \frac{N \times (N - 1)}{2}[/tex]

Substitute 105 for E

[tex]105 = \frac{N \times (N - 1)}{2}[/tex]

Multiply through by 2

[tex]210 = N \times (N - 1)[/tex]

[tex]210 = N^2 - N[/tex]

Rewrite as:

[tex]N^2 - N - 210 = 0[/tex]

Expand

[tex]N^2 +14N - 15N - 210 = 0[/tex]

Factorize

[tex]N(N +14) - 15(N + 14) = 0[/tex]

Factor out N + 14

[tex](N - 15) (N + 14) = 0[/tex]

Solve for N

[tex]N = 15[/tex] or [tex]N = -14[/tex]

The number of vertices (N) cannot be negative. So:

[tex]N = 15[/tex]

(b) The value of N for 19900 edges

We have:

[tex]E = \frac{N \times (N - 1)}{2}[/tex]

Substitute 19900 for E

[tex]19900 = \frac{N \times (N - 1)}{2}[/tex]

Multiply through by 2

[tex]39800 = N \times (N - 1)[/tex]

[tex]39800= N^2 - N[/tex]

Rewrite as:

[tex]N^2 - N - 39800= 0[/tex]

Expand

[tex]N^2 +199N - 200N - 39800= 0[/tex]

Factorize

[tex]N(N +199) - 200(N + 199) = 0[/tex]

Factor out N + 199

[tex](N + 199) (N - 200) = 0[/tex]

Solve for N

[tex]N = 200[/tex] or [tex]N = -199[/tex]

The number of vertices (N) cannot be negative. So:

[tex]N = 200[/tex]

Hence, there are 200 vertices for 19900 edges

Read more about vertices and edges at:

https://brainly.com/question/22118318